

Aos numerais decimais em que há repetição periódica e infinita de um ou mais algarismos, dá-se o nome de numerais decimais periódicos ou dízimas periódicas.
Numa dízima periódica, o algarismo ou algarismos que se repetem infinitamente, constituem o período dessa dízima.
As dízimas classificam-se em dízimas periódicas simples e dízimas periódicas compostas. Exemplos:
![]() | ![]() | ![]() |
São dízimas periódicas simples, uma vez que o período apresenta-se logo após a vírgula.
![]() Período: 2 Parte não periódica: 0 | ![]() Período: 4 Período não periódica: 15 | ![]() Período: 23 |
São dízimas periódicas compostas, uma vez que entre o período e a vírgula existe uma parte não periódica.
Observações:
Consideramos parte não periódica de uma dízima o termo situado entre vírgulas e o período. Excluímos portanto da parte não periódica o inteiro.
Podemos representar uma dízima periódica das seguintes maneiras:


Geratriz de uma dízima periódica
É possível determinar a fração (número racional) que deu origem a uma dízima periódica. Denominamos esta fração de geratriz da dízima periódica.
Procedimentos para determinação da geratriz de uma dízima:
Dízima simples
A geratriz de uma dízima simples é uma fração que tem para numerador o período e para denominador tantos noves quantos forem os algarismos do período.
Exemplos:


Dízima Composta:
A geratriz de uma dízima composta é uma fração da forma
, onde
A geratriz de uma dízima composta é uma fração da forma

n é a parte não periódica seguida do período, menos a parte não periódica.
d tantos noves quantos forem os algarismos do período seguidos de tantos zeros quantos forem os algarismos da parte não periódica.
|
Exemplos:


Exercícios
1) Qual a fração geratriz da dízima periódica 0,12343434...?
X = 0,123434…
100x = 12,3434… (isolamos o período na parte decimal)
Multiplicamos por 100 (pois o período tem dois algarismos)
10.000x = 1234,3434…
10.000x – 100x = 1234,3434… – 12,3434…
9900x = 1222
x = 1222/9900
x = 611/4950
100x = 12,3434… (isolamos o período na parte decimal)
Multiplicamos por 100 (pois o período tem dois algarismos)
10.000x = 1234,3434…
10.000x – 100x = 1234,3434… – 12,3434…
9900x = 1222
x = 1222/9900
x = 611/4950
2) determine a fração geratriz da dízima periódica 0,23333...?
Nenhum comentário:
Postar um comentário